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Linear stability analysis of convective chemical fronts in a vertical slab
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A chemical reaction front propagating in a viscous fluid separates two liquids of different densities leading
to convection. Convection enhances the speed and changes the curvature of the front. We analyze the effects
of convection as the front propagates in a two-dimensional vertical slab. In this geometry, the fluid motion can
be described using Brinkman’s equatidsppl. Sci. Res., Sect. A, 27 (1947)]. This set of equations is
coupled to a front evolution equation describing the motion of the convective chemical front. Convection will
be present depending on the slab width and gap thickness. The steady state solutions can be axisymmetric or
nonaxisymmetric fronts depending on the slab width. A linear stability analysis for the solutions shows a
region of bistability for narrow gaps. The bistability disappears as the slab width is increased.
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PACS numbegps): 47.20.Bp, 47.70.Fw, 03.40.Gc

I. INTRODUCTION axisymmetric fronts for the Navier-Stokes equatipbh4]. In
this paper we show how the front stability changes as the gap
Experiments have shown that convective fluid motion sigthickness increases using an approximation valid for wider
nificantly alters the behavior of chemical fronts and wavesgaps: Brinkman's equatiorfd5]. Recent calculations using
Miike et al. have observed that the chemical waves in theBrinkman’s equations show important finite-gap corrections
Belousov-Zhabotinskii reaction are coupled to convectivelo double-diffusive systems in a vertical slgt6]. The ad-
rolls as they travel in a thin layer of liquid]. Experiments ~vantage of Brinkman’s equations is that they reduce to Dar-
by Pojman and co-workers have shown the complex behaey’s law and the Navier-Stokes equations in the appropriate
ior of chemical waves in the bromate-sulfite Systm as limits. In this paper we carry out a linear Stabl|lty ana|ySiS of
well as double-diffusive convection in the iodate-sulfite sys-convective chemical fronts in vertical slabs using Brink-
tem [3]. Martincigh, Hauser, and Simoyi identified thermal man’s equations. Our results will show a region of bistability
plumes due to convection caused by an exothermic autocatRetween axisymmetric and nonaxisymmetric fronts for nar-
lytic reaction[4]. Masereet al. [5] obtained axisymmetric oW gaps. This bistability is not present for wider gaps.
and nonaxisymmetric fronts in the iodate-arsernous acid re-
action in vertical cylinders. In this system, convection is Il. EQUATIONS OF MOTION
caused mainly by the density difference between reacted and i i ) )
unreacted fluid. Caregt al.[6] used this reaction for experi- _Chemical fronts in the iodate-arsenous equation can be
ments in a two-dimensional vertical slab. described 14] with a nonlinear front evolution equation for
Previous theoretical work treated the convective chemicapmall curvatures:
front using two models for front propagation: a reaction- Y 244 Y
diffusion model[7] and a front evolution model similar to [7_: 0_ Co (ﬁ_
the Kuramoto-Sivashinskii equation for flame propagation gt ax* 2\ ax
[8]. Each of these models was applied to two different ge-
ometries: a vertical cylindei9] and a vertical slah10]. In ~ HereH(x,t) indicates the front height in the verticalirec-
the vertical cylinder the convectionless front loses stability totion, Co is the flat front speed, anWl,|,_, is the vertical
either axisymmetric or nonaxisymmetric convection dependcomponent of the fluid flow at the front. The horizontal di-
ing on the diameter of the cylindg®]. This theoretical result rection is along the axis. The front height is measured from
based on the front evolution model was later confirmed bya reference frame comoving with the front. The solutién
the experiment§5]. The studies in the vertical slab also =0 corresponds to the flat front moving at constant speed in
show axisymmetric and nonaxisymmetric convectjdd].  the laboratory frame. This equation was obtained from a
However, the models based on the front evolution equatiofieaction-diffusion model coupled to the corresponding hy-
did not yield stable axisymmetric fron{d2], whereas the drodynamic equations. To model the fluid flow in a vertical
models based on the reaction-diffusion equations did showlab, we use the linearized Brinkman equations in a reference
stable axisymmetric frontsl3]. These results are even more frame moving with the flat front speet:
intriguing if the Navier-Stokes equations are replaced with
Darcy’s law in the narrow gap limit. In this limit, an axisym- w=V2y (2
metric front becomes stable even with the front evolution
model[14]. A linear stability analysis using the front evolu- and
tion model in both case&he Navier-Stokes equations and
Darcy’s law) showed bistability between axisymmetric and do  _, 12 dép  dw
; . . ) —=vWo——Fw+tg—+Coi—. 3)
nonaxisymmetric fronts with Darcy’s law, but only unstable at a X a9z

2
+VZ|Z:H . (1)
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Here w is the vorticity, 5p is the fractional change in density
across the fronty is the acceleration of gravity is the gap
thickness, and is the kinematic viscosity. The stream func-
tion ¢ relates to the components of the fluid velocity by
=dyldz andV,= — dyl dx. The density difference changes
abruptly at the front; this change leads to jump conditions for
the stream function

5 Axisymmetric Nonaxisymmetric
ap| |9
L¢]= X = ox2 =0 4 FIG. 1. Descriptive sketch indicating the two types of convec-
tive fronts. Nonaxisymmetric fronts involve a single convective
and roll, where axisymmetric solutions involve two rolls.
3y gy IH and
v il (5)
ax v X
dHp [ 5 > P
= —pPq p

Here 6, indicates the fractional density difference between dt

+ H
2[pg+ 24+ 24
reacted and unreacted fluid. The terms in square brackets [par+ V(pa)™+ MV (Pa)™+ x]

indicate the value of any function in the unreacted side of the q°

front minus the value in the reacted side of the front. A T nzl 2 NMHaHm(Sp.n-mF dp,nsm)

previous analysigl4] showed that the terms in square brack-

ets can be evaluated ldt=0 for this front evolution approxi- for p=1. 9
mation. These equations are solved using a Fourier expan- 23 o

sion on the front height: Here y=(Dv/gdy)-*(12/a) is the only parameter that de-

pends ora, the gap thickness.
Important features of the convective fronts can be studied
H(x,t)= 2 Hyn(t)cogngx). (6)  with a two-variable model. We obtain this model by keeping
four terms in the expansidEg. (9)] while setting the time

The numberq is determined by the slab width, with q derivaf[ives_ _for the _Iast two terms to zero. The model is_fur-
= m/b. It corresponds to the wave numberfor perturba- ther S|_mpI|f|ed by including only third-order terms, which
tions on an unbounded froft0]. We chose free boundary resultin
conditions on the horizontal direction. This facilitates a com- ) 3¢
parison with the narrow gap limitwhere Darcy’s law is o[-+ +02 - -2
valid) because this limit only requires no fluid flow in the  dt [=a*+ Ha)lHa+a"Ha A, [99°—f(30)] :
normal direction. This also helps to compare with previous
calculations based on the Navier-Stokes equations with fre nd
boundary conditions. This will show that the differences an
similarities between both limits are due to the type of ap- dH, ) q° 5 4q* 5
proximation for the fluid flow and not to the boundary con-  —5~=[—40+f(20)JHz— 5-Hi - m"'z
ditions. It also makes the fluid equations separable with a
considerable simplification in the calculations. Relating the 3q* 5
vertical component of the velocity to a Fourier expansion on - mHle- (13)
the stream function as irl4], we obtain the front evolution
that involves only the front height and its Fourier coeffi- The functionf is defined as

2
1H2

cients:
oH PH ¢y dH\? f(x)= X : (12)
ot WﬂLj(g) 20x+ o2+ x) (Vo + x)
9o (ng)H,, cogngx) Ill. RESULTS
20§ [ng+ VingZ+ kI[N 2+ k] : The solutions of the two-variable model are flat, axisym-

) ] metric, and nonaxisymmetric fronts. Flat fronts are convec-
Here the parametek is related to the gap thickness By tjonless, where curved fronts involve steady convection as
=12/a%. At this point we introduce dimensionless units for shown in Fig. 1. We obtained these solutions analytically.
the length Dv/gs,)"? the time Dg?s5/v?) "% and the  The flat fronts H,=H,=0) are unstable for small values of
front helghtD/CO We flna”y obtain a set of Ordinary differ- g, which Correspond to |arge slab widths The Stab|||ty
ential equations for the Fourier coefficients of the frontanalysis of the flat front with free boundaries is equivalent to

height: the analysis of the unbounded front, which was carried out
) elsewherg[10]. This study showed that flat fronts are un-

%: 9 n2H2 ®) stable for perturbations of wave numbers below a critical
dt 4 =1 4 wave numberm, with g, depending on the gap thickness,
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FIG. 2. Speed of the fronts as a function of wave nuntpéor Thickness (a)
the two-variable model. The bold line indicates stable nonaxisym- F|G. 4. Region of bistability of axisymmetric and nonaxisym-
metric fronts. The thin lines indicate axisymmetric fronts. The bro-metric fronts. For widths below the triangles we find stable nonaxi-
ken line indicates that the front is unstable. The speed is measureg§mmetric fronts. For widths above the squares we find stable axi-
relative to the flat front speed. The units are the dimensionless unitsymmetric fronts. For slab widths below the triangles and above the
defined in the paper. squares both types of fronts can coexist, thus defining a region of

bistability for gap thicknesses beloa= 30.4.

which in turn determineg. Nonaxisymmetric fronts appear
for wave numbers below, as shown in Fig. 2 foy=0.7.
An analytical solution of the two-variable model shows that

the speed of these fronts is enhanced by convection. Axisy . i .

metric solutions are allowed for wave numbers belpu2. elow qc/2. In both cases the axisymmetric solutions are

A linear stability analysis showed that the nonaxisymmetricunstable neag/2, becqmm_g stable_for IOW(.er vallies Hows

fronts are always stable, where the axisymmetric fronts ar ver, the resu_lts are significantly different in othe.r respect;.
' n the two-variable model, the speed of the nonaxisymmetric

unstable neag,/2, but become stable for lower valugi]. front becomes unlimited, where in the large term expansion,

Numerical solutions of Eq98) and (9) using 100 vari- h 4 of th ) tric front h ,

ablesH, are summarized in Fig. 3 fog=0.7. As with the € speed of the axisymmelric front reaches a maximum
value. The large term expansion also shows that the nonaxi-

symmetric front becomes unstable for valuesgobelow a
critical numberqg,. The axisymmetric fronts are unstable
nearq./2, but become stable for values belgy, as shown
in Fig. 3. There is a region of bistability where nonaxisym-
metric and axisymmetric fronts are stable. This region is for
g betweenq; andq,. This bistability was also reported for
flow in porous media if14]. We have to report an erratum
in Fig. 5 of that referencéwhich is analogous to our Fig)3
where the front speed is off by a factor of 4. The speeds in
that figure have to be divided by 4. This erratum does not
change any of the conclusions or the region of bistability.
The values ofg; andq, determine two values for the slab
width b; andb,, with b, ,=/q,,. Based on the previous
discussion, there is bistability for slab widthswith b;<<b

two-variable model the solutions can be flat, axisymmetric,
or nonaxisymmetric. Both models show nonaxisymmetric
solutions for values belovg, and axisymmetric solutions

0.3

‘\ <b,. In Fig. 4 we show the values &f, andb, as a func-

L R - tion of the gap thickness. We found that for small gap thick-

4 % 025 0.5

nesses, remains larger tham,, which indicates that the
Wave number ¢

region of bistability exists. For gap thicknesses larger than

FIG. 3. Speed of the fronts as a function of wave numger 30-4, We find thab, goes abové,, indicating no bistability.
using 100 terms in the Fourier expansion. The bold and thin lined NiS result is consistent with a previous calculation that
indicates nonaxisymmetric and axisymmetric fronts, respectivelyfound no bistability for Navier-Stokes flow and bistability
The broken lines indicate that the corresponding front is unstablefor flow governed by Darcy’s law. The Navier-Stokes equa-
The wave numbers); and q, indicate the change of stability for tions are the limit for Brinkman’s equations for large gap
nonaxisymmetric and axisymmetric fronts, respectively. The spee@eparation, whereas Darcy’s law is the limit for small gaps.
is measured relative to the flat front speed. The units are the dimerSince the value ofy has to be small for the bistability to
sionless units defined in the paper. disappear, we expect that the bistability will be present in
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experiments, although the precise regions of bistability mayhowed that the nonaxisymmetric fronts are stable near the
be different due to the use of free boundary conditions. Wenset of convection, whereas the axisymmetric fronts be-
expect that the theory will be particularly useful near thecome stable away from onset. For small gaps, there is a
transition from flat to nonaxisymmetric fronts since in this region of bistability between both types of convective fronts.
region the fronts have small curvature. For large curvaturesQur calculations are consistent with previous results for vis-
the front evolution equation will have to be replaced with thecous fluids(large gap limit and for flow in porous media
full eikonal relation[17] or with a reaction-diffusion model (small gap limi}.

[18].
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