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Linear stability analysis of convective chemical fronts in a vertical slab
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Department of Physics, Indiana University–Purdue University Fort Wayne, Fort Wayne, Indiana 46805-1499

~Received 4 March 1998!

A chemical reaction front propagating in a viscous fluid separates two liquids of different densities leading
to convection. Convection enhances the speed and changes the curvature of the front. We analyze the effects
of convection as the front propagates in a two-dimensional vertical slab. In this geometry, the fluid motion can
be described using Brinkman’s equations@Appl. Sci. Res., Sect. A1, 27 ~1947!#. This set of equations is
coupled to a front evolution equation describing the motion of the convective chemical front. Convection will
be present depending on the slab width and gap thickness. The steady state solutions can be axisymmetric or
nonaxisymmetric fronts depending on the slab width. A linear stability analysis for the solutions shows a
region of bistability for narrow gaps. The bistability disappears as the slab width is increased.
@S1063-651X~98!09711-6#

PACS number~s!: 47.20.Bp, 47.70.Fw, 03.40.Gc
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I. INTRODUCTION

Experiments have shown that convective fluid motion s
nificantly alters the behavior of chemical fronts and wav
Miike et al. have observed that the chemical waves in
Belousov-Zhabotinskii reaction are coupled to convect
rolls as they travel in a thin layer of liquid@1#. Experiments
by Pojman and co-workers have shown the complex beh
ior of chemical waves in the bromate-sulfite system@2# as
well as double-diffusive convection in the iodate-sulfite s
tem @3#. Martincigh, Hauser, and Simoyi identified therm
plumes due to convection caused by an exothermic autoc
lytic reaction @4#. Masereet al. @5# obtained axisymmetric
and nonaxisymmetric fronts in the iodate-arsernous acid
action in vertical cylinders. In this system, convection
caused mainly by the density difference between reacted
unreacted fluid. Careyet al. @6# used this reaction for experi
ments in a two-dimensional vertical slab.

Previous theoretical work treated the convective chem
front using two models for front propagation: a reactio
diffusion model@7# and a front evolution model similar to
the Kuramoto-Sivashinskii equation for flame propagat
@8#. Each of these models was applied to two different
ometries: a vertical cylinder@9# and a vertical slab@10#. In
the vertical cylinder the convectionless front loses stability
either axisymmetric or nonaxisymmetric convection depe
ing on the diameter of the cylinder@9#. This theoretical result
based on the front evolution model was later confirmed
the experiments@5#. The studies in the vertical slab als
show axisymmetric and nonaxisymmetric convection@11#.
However, the models based on the front evolution equa
did not yield stable axisymmetric fronts@12#, whereas the
models based on the reaction-diffusion equations did sh
stable axisymmetric fronts@13#. These results are even mo
intriguing if the Navier-Stokes equations are replaced w
Darcy’s law in the narrow gap limit. In this limit, an axisym
metric front becomes stable even with the front evolut
model@14#. A linear stability analysis using the front evolu
tion model in both cases~the Navier-Stokes equations an
Darcy’s law! showed bistability between axisymmetric an
nonaxisymmetric fronts with Darcy’s law, but only unstab
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axisymmetric fronts for the Navier-Stokes equations@14#. In
this paper we show how the front stability changes as the
thickness increases using an approximation valid for wi
gaps: Brinkman’s equations@15#. Recent calculations using
Brinkman’s equations show important finite-gap correctio
to double-diffusive systems in a vertical slab@16#. The ad-
vantage of Brinkman’s equations is that they reduce to D
cy’s law and the Navier-Stokes equations in the appropr
limits. In this paper we carry out a linear stability analysis
convective chemical fronts in vertical slabs using Brin
man’s equations. Our results will show a region of bistabil
between axisymmetric and nonaxisymmetric fronts for n
row gaps. This bistability is not present for wider gaps.

II. EQUATIONS OF MOTION

Chemical fronts in the iodate-arsenous equation can
described@14# with a nonlinear front evolution equation fo
small curvatures:

]H

]t
5D

]2H

]x2 1
c0

2 S ]H

]x D 2

1Vzuz5H . ~1!

HereH(x,t) indicates the front height in the verticalz direc-
tion, c0 is the flat front speed, andVzuz5H is the vertical
component of the fluid flow at the front. The horizontal d
rection is along thex axis. The front height is measured from
a reference frame comoving with the front. The solutionH
50 corresponds to the flat front moving at constant spee
the laboratory frame. This equation was obtained from
reaction-diffusion model coupled to the corresponding h
drodynamic equations. To model the fluid flow in a vertic
slab, we use the linearized Brinkman equations in a refere
frame moving with the flat front speedc0 :

v5¹2c ~2!

and

]v

]t
5n¹2v2

12n

a2 v1g
]dr

]x
1c0

]v

]z
. ~3!
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Herev is the vorticity,dr is the fractional change in densit
across the front,g is the acceleration of gravity,a is the gap
thickness, andn is the kinematic viscosity. The stream fun
tion c relates to the components of the fluid velocity byVx
5]c/]z andVz52]c/]x. The density difference change
abruptly at the front; this change leads to jump conditions
the stream function

@c#5F]c

]x G5F]2c

]x2 G50 ~4!

and

F]3c

]x3 G5
gd0

n

]H

]x
. ~5!

Here d0 indicates the fractional density difference betwe
reacted and unreacted fluid. The terms in square brac
indicate the value of any function in the unreacted side of
front minus the value in the reacted side of the front.
previous analysis@14# showed that the terms in square brac
ets can be evaluated atH50 for this front evolution approxi-
mation. These equations are solved using a Fourier ex
sion on the front height:

H~x,t !5(
n

Hn~ t !cos~nqx!. ~6!

The numberq is determined by the slab widthb, with q
5p/b. It corresponds to the wave numberq for perturba-
tions on an unbounded front@10#. We chose free boundar
conditions on the horizontal direction. This facilitates a co
parison with the narrow gap limit~where Darcy’s law is
valid! because this limit only requires no fluid flow in th
normal direction. This also helps to compare with previo
calculations based on the Navier-Stokes equations with
boundary conditions. This will show that the differences a
similarities between both limits are due to the type of a
proximation for the fluid flow and not to the boundary co
ditions. It also makes the fluid equations separable wit
considerable simplification in the calculations. Relating
vertical component of the velocity to a Fourier expansion
the stream function as in@14#, we obtain the front evolution
that involves only the front height and its Fourier coef
cients:

]H

]t
5D

]2H

]x2 1
c0

2 S ]H

]x D 2

1
gd0

2n (
n

~nq!Hn cos~nqx!

@nq1A~nq!21k#@A~nq!21k#
. ~7!

Here the parameterk is related to the gap thickness byk
512/a2. At this point we introduce dimensionless units f
the length (Dn/gd0)1/3, the time (Dg2d0

2/n2)21/3, and the
front heightD/c0 . We finally obtain a set of ordinary differ
ential equations for the Fourier coefficients of the fro
height:

dH0

dt
5

q2

4 (
n51

n2Hn
2 ~8!
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dHp

dt
5S 2p2q21

pq

2@pq1A~pq!21x#@A~pq!21x#
D Hp

1
q2

4 (
n51

(
m51

nmHnHm~dp,n2m1dp,n1m!

for p>1. ~9!

Herex5(Dn/gd0)2/3(12/a2) is the only parameter that de
pends ona, the gap thickness.

Important features of the convective fronts can be stud
with a two-variable model. We obtain this model by keepi
four terms in the expansion@Eq. ~9!# while setting the time
derivatives for the last two terms to zero. The model is f
ther simplified by including only third-order terms, whic
result in

dH1

dt
5@2q21 f ~q!#H11q2H1H22

3q4

@9q22 f ~3q!#
H1H2

2

~10!

and

dH2

dt
5@24q21 f ~2q!#H22

q2

4
H1

22
4q4

@16q22 f ~4q!#
H2

3

2
3q4

2@9q22 f ~3q!#
H1

2H2 . ~11!

The functionf is defined as

f ~x!5
x

2~x1Aq21x!~Aq21x!
. ~12!

III. RESULTS

The solutions of the two-variable model are flat, axisy
metric, and nonaxisymmetric fronts. Flat fronts are conv
tionless, where curved fronts involve steady convection
shown in Fig. 1. We obtained these solutions analytica
The flat fronts (H15H250) are unstable for small values o
q, which correspond to large slab widthsb. The stability
analysis of the flat front with free boundaries is equivalent
the analysis of the unbounded front, which was carried
elsewhere@10#. This study showed that flat fronts are u
stable for perturbations of wave numbers below a criti
wave numberqc , with qc depending on the gap thicknes

FIG. 1. Descriptive sketch indicating the two types of conve
tive fronts. Nonaxisymmetric fronts involve a single convecti
roll, where axisymmetric solutions involve two rolls.
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which in turn determinesx. Nonaxisymmetric fronts appea
for wave numbers belowqc as shown in Fig. 2 forx50.7.
An analytical solution of the two-variable model shows th
the speed of these fronts is enhanced by convection. Axis
metric solutions are allowed for wave numbers belowqc/2.
A linear stability analysis showed that the nonaxisymme
fronts are always stable, where the axisymmetric fronts
unstable nearqc/2, but become stable for lower values@14#.

Numerical solutions of Eqs.~8! and ~9! using 100 vari-
ablesHp are summarized in Fig. 3 forx50.7. As with the

FIG. 2. Speed of the fronts as a function of wave numberq for
the two-variable model. The bold line indicates stable nonaxisy
metric fronts. The thin lines indicate axisymmetric fronts. The b
ken line indicates that the front is unstable. The speed is meas
relative to the flat front speed. The units are the dimensionless u
defined in the paper.

FIG. 3. Speed of the fronts as a function of wave numbeq
using 100 terms in the Fourier expansion. The bold and thin li
indicates nonaxisymmetric and axisymmetric fronts, respectiv
The broken lines indicate that the corresponding front is unsta
The wave numbersq1 and q2 indicate the change of stability fo
nonaxisymmetric and axisymmetric fronts, respectively. The sp
is measured relative to the flat front speed. The units are the dim
sionless units defined in the paper.
t
-

c
re

two-variable model the solutions can be flat, axisymmet
or nonaxisymmetric. Both models show nonaxisymmet
solutions for values belowqc and axisymmetric solutions
below qc/2. In both cases the axisymmetric solutions a
unstable nearqc/2, becoming stable for lower values. How
ever, the results are significantly different in other respe
In the two-variable model, the speed of the nonaxisymme
front becomes unlimited, where in the large term expans
the speed of the axisymmetric front reaches a maxim
value. The large term expansion also shows that the non
symmetric front becomes unstable for values ofq below a
critical numberq2 . The axisymmetric fronts are unstab
nearqc/2, but become stable for values belowq1 , as shown
in Fig. 3. There is a region of bistability where nonaxisym
metric and axisymmetric fronts are stable. This region is
q betweenq1 andq2 . This bistability was also reported fo
flow in porous media in@14#. We have to report an erratum
in Fig. 5 of that reference~which is analogous to our Fig. 3!
where the front speed is off by a factor of 4. The speeds
that figure have to be divided by 4. This erratum does
change any of the conclusions or the region of bistabil
The values ofq1 and q2 determine two values for the sla
width b1 andb2 , with b1,25p/q1,2. Based on the previous
discussion, there is bistability for slab widthsb with b1,b
,b2 . In Fig. 4 we show the values ofb1 andb2 as a func-
tion of the gap thickness. We found that for small gap thic
nessesb2 remains larger thanb1 , which indicates that the
region of bistability exists. For gap thicknesses larger th
30.4, we find thatb1 goes aboveb2 , indicating no bistability.
This result is consistent with a previous calculation th
found no bistability for Navier-Stokes flow and bistabilit
for flow governed by Darcy’s law. The Navier-Stokes equ
tions are the limit for Brinkman’s equations for large ga
separation, whereas Darcy’s law is the limit for small ga
Since the value ofx has to be small for the bistability to
disappear, we expect that the bistability will be present
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FIG. 4. Region of bistability of axisymmetric and nonaxisym
metric fronts. For widths below the triangles we find stable nona
symmetric fronts. For widths above the squares we find stable
symmetric fronts. For slab widths below the triangles and above
squares both types of fronts can coexist, thus defining a regio
bistability for gap thicknesses belowa530.4.
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experiments, although the precise regions of bistability m
be different due to the use of free boundary conditions.
expect that the theory will be particularly useful near t
transition from flat to nonaxisymmetric fronts since in th
region the fronts have small curvature. For large curvatu
the front evolution equation will have to be replaced with t
full eikonal relation@17# or with a reaction-diffusion mode
@18#.

IV. CONCLUSION

In summary, we found axisymmetric and nonaxisymm
ric fronts in vertical slabs. The linear stability analys
em
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-

showed that the nonaxisymmetric fronts are stable near
onset of convection, whereas the axisymmetric fronts
come stable away from onset. For small gaps, there
region of bistability between both types of convective fron
Our calculations are consistent with previous results for v
cous fluids~large gap limit! and for flow in porous media
~small gap limit!.
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